Lecture 1.2
Intrinsic semiconductors
Electrons and “holes”
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1 Intrinsic semiconductors
An intrinsic semiconductor, also called an undoped semiconductor or i-type semiconductor, is a pure semiconductor without any significant dopant species present. The number of charge carriers is therefore determined by the properties of the material itself instead of the amount of impurities. In intrinsic semiconductors the number of excited electrons and the number of holes are equal: n = p.

The conductivity of intrinsic semiconductors can be due to crystal defects or to thermal excitation. In an intrinsic semiconductor the number of electrons in the conduction band is equal to the number of holes in the valence band. An example is Hg0.8Cd0.2Te at room temperature.

An indirect gap intrinsic semiconductor is one where the maximum energy of the valence band occurs at a different k (k-space wave vector) than the minimum energy of the conduction band. Examples include silicon and germanium. A direct gap intrinsic semiconductor is one where the maximum energy of the valence band occurs at the same k as the minimum energy of the conduction band. Examples include gallium arsenide.

A silicon crystal is different from an insulator because at any temperature above absolute zero temperature, there is a finite probability that an electron in the lattice will be knocked loose from its position, leaving behind an electron deficiency called a "hole".

If a voltage is applied, then both the electron and the hole can contribute to a small current flow.

The conductivity of a semiconductor can be modeled in terms of the band theory of solids. The band model of a semiconductor suggests that at ordinary temperatures there is a finite possibility that electrons can reach the conduction band and contribute to electrical conduction.

The term intrinsic here distinguishes between the properties of pure "intrinsic" silicon and the dramatically different properties of doped n-type or p-type semiconductors.

Electrons and Holes: In an intrinsic semiconductor such as silicon at temperatures above absolute zero, there will be some electrons which are excited across the band gap into the conduction band and which can produce current. When the electron in pure silicon crosses the gap, it leaves behind an electron vacancy or "hole" in the regular silicon lattice. Under the influence of an external voltage, both the electron and the hole can move across the material. In an n-type semiconductor, the dopant contributes extra electrons, dramatically increasing the conductivity. In a p-type semiconductor, the dopant produces extra vacancies or holes, which likewise increase the conductivity. It is however the behavior of the p-n junction which is the key to the enormous variety of solid-state electronic devices.

Semiconductor Current: The current which will flow in an intrinsic semiconductor consists of both electron and hole current. That is, the electrons which have been freed from their lattice positions into the conduction band can move through the material. In addition, other electrons can hop between lattice positions to fill the vacancies left by the freed electrons. This additional mechanism is called hole conduction because it is as if the holes are migrating across the material in the direction opposite to the free electron movement.

The current flow in an intrinsic semiconductor is influenced by the density of energy states which in turn influences the electron density in the conduction band. This current is highly temperature dependent.

2 Electrons and “holes”
Pure semiconductors are relatively good insulators as compared with metals, though not nearly as good as a true insulator like glass. To be useful in semiconductor applications, the intrinsic semiconductor, pure undoped semiconductor must have no more than one impurity atom in 10 billion semiconductor atoms. This is analogous to a grain of salt impurity in a railroad boxcar of sugar. Impure, or dirty semiconductors are considerably more conductive, though not as good as metals. Why might this be? To answer that question, we must look at the electron structure of such materials in Figure below. 

Figure below (a) shows four electrons in the valence shell of a semiconductor forming covalent bonds to four other atoms. This is a flattened, easier to draw, version of Figure above. All electrons of an atom are tied up in four covalent bonds, pairs of shared electrons. Electrons are not free to move about the crystal lattice. Thus, intrinsic, pure, semiconductors are relatively good insulators as compared to metals. 
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(a) Intrinsic semiconductor is an insulator having a complete electron shell. 
(b) However, thermal energy can create few electron hole pairs resulting in weak conduction.
Thermal energy may occasionally free an electron from the crystal lattice as in Figure above (b). This electron is free for conduction about the crystal lattice. When the electron was freed, it left an empty spot with a positive charge in the crystal lattice known as a hole. This hole is not fixed to the lattice; but, is free to move about. The free electron and hole both contribute to conduction about the crystal lattice. That is, the electron is free until it falls into a hole. This is called recombination. If an external electric field is applied to the semiconductor, the electrons and holes will conduct in opposite directions. Increasing temperature will increase the number of electrons and holes, decreasing the resistance. This is opposite of metals, where resistance increases with temperature by increasing the collisions of electrons with the crystal lattice. The number of electrons and holes in an intrinsic semiconductor are equal. However, both carriers do not necessarily move with the same velocity with the application of an external field. Another way of stating this is that the mobility is not the same for electrons and holes. 

Pure semiconductors, by themselves, are not particularly useful. Though, semiconductors must be refined to a high level of purity as a starting point prior the addition of specific impurities. 

Semiconductor material pure to 1 part in 10 billion, may have specific impurities added at approximately 1 part per 10 million to increase the number of carriers. The addition of a desired impurity to a semiconductor is known as doping. Doping increases the conductivity of a semiconductor so that it is more comparable to a metal than an insulator. 

It is possible to increase the number of negative charge carriers within the semiconductor crystal lattice by doping with an electron donor like Phosphorus. Electron donors, also known as N-type dopants include elements from group VA of the periodic table: nitrogen, phosphorus, arsenic, and antimony. Nitrogen and phosphorus are N-type dopants for diamond. Phosphorus, arsenic, and antimony are used with silicon. 

The crystal lattice in Figure below (a) contains atoms having four electrons in the outer shell, forming four covalent bonds to adjacent atoms. This is the anticipated crystal lattice. The addition of a phosphorus atom with five electrons in the outer shell introduces an extra electron into the lattice as compared with the silicon atom. The pentavalent impurity forms four covalent bonds to four silicon atoms with four of the five electrons, fitting into the lattice with one electron left over. Note that this spare electron is not strongly bonded to the lattice as the electrons of normal Si atoms are. It is free to move about the crystal lattice, not being bound to the Phosphorus lattice site. Since we have doped at one part phosphorus in 10 million silicon atoms, few free electrons were created compared with the numerous silicon atoms. However, many electrons were created compared with the fewer electron-hole pairs in intrinsic silicon. Application of an external electric field produces strong conduction in the doped semiconductor in the conduction band (above the valence band). A heavier doping level produces stronger conduction. Thus, a poorly conducting intrinsic semiconductor has been converted into a good electrical conductor. 
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(a) Outer shell electron configuration of donor N-type Phosphorus, Silicon (for reference), and acceptor P-type Boron. 
(b) N-type donor impurity creates free electron 
(c) P-type acceptor impurity creates hole, a positive charge carrier.
It is also possible to introduce an impurity lacking an electron as compared with silicon, having three electrons in the valence shell as compared with four for silicon. In Figure above (b), this leaves an empty spot known as a hole, a positive charge carrier. The boron atom tries to bond to four silicon atoms, but only has three electrons in the valence band. In attempting to form four covalent bonds the three electrons move around trying to form four bonds. This makes the hole appear to move. Furthermore, the trivalent atom may borrow an electron from an adjacent (or more distant) silicon atom to form four covalent bonds. However, this leaves the silicon atom deficient by one electron. In other words, the hole has moved to an adjacent (or more distant) silicon atom. Holes reside in the valence band, a level below the conduction band. Doping with an electron acceptor, an atom which may accept an electron, creates a deficiency of electrons, the same as an excess of holes. Since holes are positive charge carriers, an electron acceptor dopant is also known as a P-type dopant. The P-type dopant leaves the semiconductor with an excess of holes, positive charge carriers. The P-type elements from group IIIA of the periodic table include: boron, aluminum, gallium, and indium. Boron is used as a P-type dopant for silicon and diamond semiconductors, while indium is used with germanium. 

The “marble in a tube” analogy to electron conduction in Figure below relates the movement of holes with the movement of electrons. The marble represent electrons in a conductor, the tube. The movement of electrons from left to right as in a wire or N-type semiconductor is explained by an electron entering the tube at the left forcing the exit of an electron at the right. Conduction of N-type electrons in the conduction band. Compare that with the movement of a hole in the valence band. 
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Marble in a tube analogy: 
(a) Electrons move right in the conduction band as electrons enter tube. 
(b) Hole moves right in the valence band as electrons move left.
For a hole to enter at the left of Figure above (b), an electron must be removed. Moving a hole left to right, the electron must be moved right to left. The first electron is ejected from the left end of the tube so that the hole may move to the right into the tube. The electron is moving in the opposite direction of the positive hole. As the hole moves farther to the right, electrons must move left to accommodate the hole. The hole is the absence of an electron in the valence band due to P-type doping. It has a localized positive charge. To move the hole in a given direction, the valence electrons move in the opposite direction. 

Electron flow in an N-type semiconductor is similar to electrons moving in a metallic wire. The N-type dopant atoms will yield electrons available for conduction. These electrons, due to the dopant are known as majority carriers, for they are in the majority as compared to the very few thermal holes. If an electric field is applied across the N-type semiconductor bar in Figure below (a), electrons enter the negative (left) end of the bar, traverse the crystal lattice, and exit at right to the (+) battery terminal. 
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(a) N-type semiconductor with electrons moving left to right through the crystal lattice. 
(b) P-semiconductor with holes moving left to right, which corresponds to electrons moving in the opposite direction.
Current flow in a P-type semiconductor is a little more difficult to explain. The P-type dopant, an electron acceptor, yields localized regions of positive charge known as holes. The majority carrier in a P-type semiconductor is the hole. While holes form at the trivalent dopant atom sites, they may move about the semiconductor bar. Note that the battery in Figure above (b) is reversed from (a). The positive battery terminal is connected to the left end of the P-type bar. Electron flow is out of the negative battery terminal, through the P-type bar, returning to the positive battery terminal. An electron leaving the positive (left) end of the semiconductor bar for the positive battery terminal leaves a hole in the semiconductor, that may move to the right. Holes traverse the crystal lattice from left to right. At the negative end of the bar an electron from the battery combines with a hole, neutralizing it. This makes room for another hole to move in at the positive end of the bar toward the right. Keep in mind that as holes move left to right, that it is actually electrons moving in the opposite direction that is responsible for the apparent hole movement. 

The elements used to produce semiconductors are summarized in Figure below. The oldest group IVA bulk semiconductor material germanium is only used to a limited extent today. Silicon based semiconductors account for about 90% of commercial production of all semiconductors. Diamond based semiconductors are a research and development activity with considerable potential at this time. Compound semiconductors not listed include silicon germanium (thin layers on Si wafers), silicon carbide and III-V compounds such as gallium arsenide. III-VI compound semiconductors include: AlN, GaN, InN, AlP, AlAs, AlSb, GaP, GaAs, GaSb, InP, InAs, InSb, AlxGa1-xAs and InxGa1-xAs. Columns II and VI of periodic table, not shown in the figure, also form compound semiconductors. 
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Group IIIA P-type dopants, group IV basic semiconductor materials, and group VA N-type dopants.
The main reason for the inclusion of the IIIA and VA groups in Figure above is to show the dopants used with the group IVA semiconductors. Group IIIA elements are acceptors, P-type dopants, which accept electrons leaving a hole in the crystal lattice, a positive carrier. Boron is the P-type dopant for diamond, and the most common dopant for silicon semiconductors. Indium is the P-type dopant for germanium. 

Group VA elements are donors, N-type dopants, yielding a free electron. Nitrogen and Phosphorus are suitable N-type dopants for diamond. Phosphorus and arsenic are the most commonly used N-type dopants for silicon; though, antimony can be used. 

· REVIEW: 

· Intrinsic semiconductor materials, pure to 1 part in 10 billion, are poor conductors. 

· N-type semiconductor is doped with a pentavalent impurity to create free electrons. Such a material is conductive. The electron is the majority carrier. 

· P-type semiconductor, doped with a trivalent impurity, has an abundance of free holes. These are positive charge carriers. The P-type material is conductive. The hole is the majority carrier 

· Most semiconductors are based on elements from group IVA of the periodic table, silicon being the most prevalent. Germanium is all but obsolete. Carbon (diamond) is being developed. 

· Compound semiconductors such as silicon carbide (group IVA) and gallium arsenide (group III-V) are widely used. 

3 Fermi Level 

[image: image6.png]Conduction

Bana
E o
90T atabsoite
Formi_ | 2900 0K
Lovel 2

1(E)

Valence Band |~
3

Context of Fermi level
for a semiconductor




"Fermi level" is the term used to describe the top of the collection of electron energy levels at absolute zero temperature. This concept comes from Fermi-Dirac statistics. Electrons are fermions and by the Pauli exclusion principle cannot exist in identical energy states. So at absolute zero they pack into the lowest available energy states and build up a "Fermi sea" of electron energy states. The Fermi level is the surface of that sea at absolute zero where no electrons will have enough energy to rise above the surface. The concept of the Fermi energy is a crucially important concept for the understanding of the electrical and thermal properties of solids. Both ordinary electrical and thermal processes involve energies of a small fraction of an electron volt. But the Fermi energies of metals are on the order of electron volts. This implies that the vast majority of the electrons cannot receive energy from those processes because there are no available energy states for them to go to within a fraction of an electron volt of their present energy. Limited to a tiny depth of energy, these interactions are limited to "ripples on the Fermi sea". 

At higher temperatures a certain fraction, characterized by the Fermi function, will exist above the Fermi level. The Fermi level plays an important role in the band theory of solids. In doped semiconductors, p-type and n-type, the Fermi level is shifted by the impurities, illustrated by their band gaps. The Fermi level is referred to as the electron chemical potential in other contexts.

In metals, the Fermi energy gives us information about the velocities of the electrons which participate in ordinary electrical conduction. The amount of energy which can be given to an electron in such conduction processes is on the order of micro-electron volts (see copper wire example), so only those electrons very close to the Fermi energy can participate. The Fermi velocity of these conduction electrons can be calculated from the Fermi energy.
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This speed is a part of the microscopic Ohm's Law for electrical conduction. For a metal, the density of conduction electrons can be implied from the Fermi energy.

The Fermi energy also plays an important role in understanding the mystery of why electrons do not contribute significantly to the specific heat of solids at ordinary temperatures, while they are dominant contributors to thermal conductivity and electrical conductivity. Since only a tiny fraction of the electrons in a metal are within the thermal energy kT of the Fermi energy, they are "frozen out" of the heat capacity by the Pauli principle. At very low temperatures, the electron specific heat becomes significant.

Fermi Function 

The Fermi function f(E) gives the probability that a given available electron energy state will be occupied at a given temperature. The Fermi function comes from Fermi-Dirac statistics and has the form 
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The basic nature of this function dictates that at ordinary temperatures, most of the levels up to the Fermi level EF are filled, and relatively few electrons have energies above the Fermi level. The Fermi level is on the order of electron volts (e.g., 7 eV for copper), whereas the thermal energy kT is only about 0.026 eV at 300K. If you put those numbers into the Fermi function at ordinary temperatures, you find that its value is essentially 1 up to the Fermil level, and rapidly approaches zero above it. 
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The illustration below shows the implications of the Fermi function for the electrical conductivity of a semiconductor. The band theory of solids gives the picture that there is a sizable gap between the Fermi level and the conduction band of the semiconductor. At higher temperatures, a larger fraction of the electrons can bridge this gap and participate in electrical conduction.

Note that although the Fermi function has a finite value in the gap, there is no electron population at those energies (that's what you mean by a gap). The population depends upon the product of the Fermi function and the electron density of states. So in the gap there are no electrons because the density of states is zero. In the conduction band at 0K, there are no electrons even though there are plenty of available states, but the Fermi function is zero. At high temperatures, both the density of states and the Fermi function have finite values in the conduction band, so there is a finite conducting population. 

Density of Energy States 

The Fermi function gives the probability of occupying an available energy state, but this must be factored by the number of available energy states to determine how many electrons would reach the conduction band.This density of states is the electron density of states, but there are differences in its implications for conductors and semiconductors. For the conductor, the density of states can be considered to start at the bottom of the valence band and fill up to the Fermi level, but since the conduction band and valence band overlap, the Fermi level is in the conduction band so there are plenty of electrons available for conduction. In the case of the semiconductor, the density of states is of the same form, but the density of states for conduction electrons begins at the top of the gap. 
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Population of Conduction Band for a Semiconductor 
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The population of conduction electrons for a semiconductor is given by
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where 
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Начало формы

For a semiconductor with bandgap [image: image14.wmf]

eV (1.1 eV for Si, 0.72 eV for Ge)
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the conduction electron population is [image: image17.wmf]
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Конец формы

You could use this calculation to verify that the conduction electron population Ncb in germanium doubles for about a 13 degree rise in temperature. For silicon, Ncb doubles for about an 8 degree rise in temperature. Because of the larger band gap, there will be fewer conduction electrons in silicon than germanium for any given temperature. 

Additional material 

Wave vector

A wave vector is a vector representation of a wave. The wave vector has magnitude indicating wavenumber (reciprocal of wavelength), and the direction of the vector indicates the direction of wave propagation.

The wave vector is most useful for generalizing the equation of a single wave into a description of a family of waves. As long as the family of waves all travel in the same direction and with the same wavelength, a single wave vector is valid for the entire family. The most common case of a family of waves that meets these requirements is the plane wave, in which the family of waves is also coherent, i.e. all the waves have the same phase.

For example, a common representation of a single wave at a single point in space is:
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where A is the amplitude, ω is the angular frequency, and φ is the starting phase of the wave (the independent variable t is time).

For a wave that is travelling along an axis z, the phase at any point along the axis will be shifted from what it is at the origin. This is accounted for by an additional phase offset term:
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where k is the angular wavenumber
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and the new independent variable z is the distance along the axis.

Now, as long as we are dealing with a simple family of waves, with identical direction, wavelength, and phase (i.e. a plane wave), we can extend the formula by substituting the wave vector k for the wavenumber k, and the location in space vector r for the variable z:
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Fermion

In particle physics, fermions are particles which obey Fermi–Dirac statistics; they are named after Enrico Fermi. In contrast to bosons, which have Bose–Einstein statistics, only one fermion can occupy a quantum state at a given time; this is the Pauli Exclusion Principle.

Thus, if more than one fermion occupies the same place in space, the properties of each fermion (e.g. its spin) must be different from the rest. Therefore, fermions are usually associated with matter while bosons are often force carrier particles, though the distinction between the two concepts in quantum physics is unclear.

Fermions can be elementary, like the electron, or composite, like the proton. All observed fermions have half-integer spin, as opposed to bosons, which have integerspin. This is in accordance with the spin-statistics theorem which states that in any reasonable relativistic quantum field theory, particles with integer spin are bosons, while particles with half-integer spin are fermions.

In the Standard Model there are two types of elementary fermions: quarks and leptons. In total, there are 24 different fermions: being 6 quarks and 6 leptons, each with a corresponding antiparticle:

· 12 quarks - 6 particles (u · d · s · c · b · t) with 6 corresponding antiparticles (u · d ·s · c · b · t);

· 12 leptons - 6 particles (e− · μ− · τ− · νe · νμ · ντ) with 6 corresponding antiparticles (e+ · μ+ · τ+ · νe · νμ · ντ).

Composite fermions, such as protons and neutrons, are essential building blocks of matter. Weakly interacting fermions can also display bosonic behaviour, as in superconductivity.
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The Standard Model of elementary particles, with the fermions in the first three columns
Definition and basic properties
By definition, fermions are particles which obey Fermi–Dirac statistics: when one swaps two fermions, the wavefunction of the system changes sign.[1] This "antisymmetric wavefunction" behavior implies that fermions are subject to the Pauli exclusion principle — no two fermions can occupy the same quantum state at the same time. This results in "rigidity" or "stiffness" of states which include fermions (atomic nuclei, atoms, molecules, etc.), so fermions are sometimes said to be the constituents of matter, while bosons are said to be the particles that transmit interactions (force carriers), or the constituents of radiation. The quantum fields of fermions are fermionic fields, obeying canonical anticommutation relations.

The Pauli exclusion principle for fermions and the associated rigidity of matter is responsible for the stability of the electron shells of atoms (thus for stability of atomic matter) and the complexity of atoms (making it impossible for all atomic electrons to occupy the same energy level), thus making complex chemistry possible. It is also responsible for the pressure within degenerate matter which largely governs the equilibrium state of white dwarfs and neutron stars. On a more everyday scale, the Pauli exclusion principle is a major contributor to the Young modulus of elastic material.

All known fermions are particles with half-integer spin: as an observer circles a fermion (or as the fermion rotates 360° about its axis) thewavefunction of the fermion changes sign. In the framework of nonrelativistic quantum mechanics, this is a purely empirical observation. However, in relativistic quantum field theory, the spin-statistics theorem shows that half-integer spin particles cannot be bosons and integer spin particles cannot be fermions.[2]
In large systems, the difference between bosonic and fermionic statistics is only apparent at large densities when their wave functions overlap. At low densities, both types of statistics are well approximated by Maxwell-Boltzmann statistics, which is described by classical mechanics.

Elementary fermions
See also: List of particles#Fermions
All observed elementary particles are either fermions or bosons. The known elementary fermions are divided into two groups: quarks andleptons.

· Quarks make up protons, neutrons and other baryons, which are composite fermions; they also comprise mesons, which are composite bosons.

· Leptons include the electron and similar, heavier particles (the muon and tauon); they also include neutrinos.

The known fermions of left-handed helicity experience weak interactions while the known right-handed fermions do not. Or put another way, only left-handed fermions and right-handed antifermions interact with the W boson.

Composite fermions
See also: List of particles#Composite particles
Composite particles (such as hadrons, nuclei, and atoms) can be bosons or fermions depending on their constituents. More precisely, because of the relation between spin and statistics, a particle containing an odd number of fermions is itself a fermion: it will have half-integer spin.

Examples include the following:

· A baryon, such as the proton or neutron, contains three fermionic quarks and is therefore a fermion;

· The nucleus of a carbon-13 atom contains 6 protons and 7 neutrons and is therefore a fermion;

· The atom helium-3 (3He) is made of 2 protons, a neutron and 2 electrons and is therefore a fermion.

The number of bosons within a composite particle made up of simple particles bound with a potential has no effect on whether it is a boson or a fermion.

Fermionic or bosonic behavior of a composite particle (or system) is only seen at large (compared to size of the system) distance. At proximity, where spatial structure begins to be important, a composite particle (or system) behaves according to its constituent makeup.

Fermions can exhibit bosonic behavior when they become loosely bound in pairs. This is the origin of superconductivity and the superfluidity ofhelium-3: in superconducting materials, electrons interact through the exchange of phonons, forming Cooper pairs, while in helium-3, Cooper pairs are formed via spin fluctuations.

The fundamental building blocks of the fractional quantum Hall effect are also particles known as composite fermions, which are electrons with an even number of quantized vortices attached to them.

Skyrmions
In a quantum field theory, there can be field configurations of bosons which are topologically twisted. These are coherent states (or solitons) which behave like a particle, and they can be fermionic even if all the elementary particles are bosons. This was discovered by Tony Skyrme in the early 1960s, so fermions made of bosons are named Skyrmions after him.

Skyrme's original example involves fields which take values on a three-dimensional sphere, the original nonlinear sigma model that describes the large distance behavior of pions. In Skyrme's model, which is reproduced in the large N or string approximation to QCD, the proton and neutron are fermionic topological solitons of the pion field. While Skyrme's example involves pion physics, there is a much more familiar example in quantum electrodynamics with a magnetic monopole. A bosonic monopole with the smallest possible magnetic charge and a bosonic version of the electron would form a fermionic dyon.

See also
· Fermionic field
· Identical particles
· Parastatistics
· Anyon
· Fermionic condensate
· Superconductivity
· Fractional quantum Hall effect
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