
VisSim Tutorial Series

Biomedical Systems: Modeling
and Simulation of Lung

Mechanics and Ventilator
Controls Design

Mike Borrello, Metran America, Inc.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

ii

VisSim Tutorial Series

Biomedical Systems: Modeling and Simulation of Lung Mechanics and Ventilator
Controls Design

Copyright ©1997 Visual Solutions, Inc.

All rights reserved.

Trademarks VisSim, VisSim/C-Code, and VisSim/Real-TimePRO are trademarks of Visual
Solutions.

Excerpted with permission from Modeling and Visual Simulation in Industry, A. Mulpur and
P. Darnell, International Thomson Computer Press, Boston, MA, 1997.

The information in this document is subject to change without notice and does not represent a
commitment by Visual Solutions. Visual Solutions does not assume responsibility for errors that
may appear in this document.

Other books in the VisSim Tutorial Series include:

• Fundamentals of Mathematical Modeling and Simulation. Peter Darnell and Arun Mulpur,
Visual Solutions, Inc.

• Heating, Ventilation and Air Conditioning (HVAC) Controls: Variable Air Volume (VAV)
Systems. Nebil Ben-Aissa, Johnson Controls, Inc.

• Introduction to 6-DOF Simulation of Air Vehicles. Robert Josselson, ITT Aerospace Systems
Group.

• Simulation of Communication Systems. Eugene Estinto, Eritek, Inc.

• Simulation of Motion Control Systems. William Erickson, Indramat-Rexroth.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

iii

Table of Contents
Introduction ... 1

Overview of a Ventilation System.. 1

Model Development .. 2

Patient Circuit ...3

Endotracheal Tube..4

Flow Valves..5

Patient Resistive Airways ...6

The Lung as an Elastic Compartment...6

Respiratory Drive ...7

Model Construction .. 8

Constructing the VisSim Block Diagram ...9

Model Simplification..9

Using the Model in Simulation... 10

Investigating More Complex Properties of the Lung/Ventilator Model.......................11

Programming VisSim for Embedded Applications ... 12

Hardware-in-the-Loop Simulation..12

Aliasing and Filtering Measurements ...13

Verifying Real Time in VisSim..13

Step Rate Selection Considerations ..15

Using transferFunction Blocks ...15

Choice of Integration Method...15

Transferring the Control Design...16

Selecting an Embedded Processor ..16

Modular Programming..16

Tracking Product Development ..17

Working with Variables..17

Discretizing the Design...18

The C-Code Generator for Real-Time Control Applications....................................18

References .. 19

1

Introduction
This tutorial focuses on one representative application in the field of biomedical engineering: the
modeling and simulation of lung mechanics for the purpose of designing feedback controls in
mechanical ventilation. It contains the following information:

• How to derive a simulation model in VisSim

• How to apply measurement and control using real-time interface methods

• How to transfer the design to end product embedded controls

 For those unfamiliar with programming with block diagrams, this tutorial offers a step-by-step
example, starting with basic model development.

 In Model Development, the general aspects of modeling lung mechanics are introduced.
Components of the system are described and reduced to block models. The components are then
assembled into a single mechanical ventilation model. Model variations are then considered and
responses are compared with real-time, closed-loop control responses of a real system to select the
simplest, but most suitable model for ventilator controls design.

 The section Using the Model in Simulation describes how the VisSim lung/ventilator model is
used in simulation to investigate properties and behavior of lung mechanics with feedback
controls.

 The section on Programming VisSim for Embedded Applications describes certain considerations
when using VisSim for desktop hardware-in-the loop applications and real-time issues.
Transferring the control design to embedded hardware is then discussed with tips on how to make
this transfer as accurate and easy as possible.

 The methodology presented in this tutorial is not only applicable to ventilation, but also to any
product with embedded controls.

Overview of a Ventilation System
 When a patient’s ability to breathe becomes unstable or compromised, a mechanical ventilator is
often required to assist or control breathing. The ventilator provides precise control of the flow,
pressure and composition of the gas for the patient. A ventilator typically employs a supply flow
valve and an exhalation valve, which delivers gas into the patient’s lungs and vents gas to
atmosphere, respectively. By sequencing the operation of these valves, the act of breathing can be
emulated. Gas reaches and is expelled by the patient through flexible tubular conduits known as
the patient circuit. The exhalation and flow supply valves are connected to separate legs of the
patient circuit, which join at a Y piece. The Y piece connects to a face mask, or under more
invasive situations, a tube inserted into the patient’s trachea. Pressure and/or flow sensors monitor
the state of the gas and provide measurements for feedback control. Figure 1, shown below,
illustrates the components of a typical ventilation system.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

2

VENTILATOR

FLOW SUPPLY
VALVE

EXHALATION
VALVE

PATIENT
CIRCUIT

PRESSURE
SENSOR

"Y"

PATIENT
CONNECTION

Figure 1. Ventilation system

 The patient’s condition determines the “mode” of ventilation prescribed to maintain life support.
In most high-end ventilators, feedback control is used to support the operation of these modes and
in a manner that is robust to a wide range of patients, patient circuits, and operating conditions.

 Nonlinearities, time lags, and wide variability of parameters make the problem difficult to analyze
by traditional control methods. Although these systems are not easily broken apart analytically,
they can still be approximated mathematically and written into simulation for systematic study of
behavior under various control techniques. This requires a fundamental understanding of the
properties and behavior of the flow of gases and some familiarity with the anatomy and
physiology of breathing.

 There have been numerous repeated efforts to develop mathematical models of lung mechanics;
however, for the study and application of feedback control in ventilation, these models lack key
features that allow proper assessment: consideration of the patient circuit mechanics, and the
nonlinear behavior of flow and pressure in various components. After several years of work on
the problem, these essential features have been incorporated into a model that better serves its
purpose. With the use of a visual simulation tool, such as VisSim, this model has been refined to
the point where controls can now be totally designed in a simulation environment before transfer
to the embedded software application. Furthermore, the real-time interface provided by VisSim
allows linking mechanical components, such as valves and sensors so that the final control design
can be completed in a PC Windows environment prior to working with the embedded processor.
This helps isolate control design flaws from software bugs. Design and verification of the controls
alone, before code issues are introduced, can greatly speed the time to market.

Model Development
 The ventilator/lung system consists of:

• The patient circuit

• Valves that artificially control flow into and out of the patient circuit

• An endotracheal tube that connects the patient circuit to the patient’s upper airways

• The patient’s lungs and connecting airways

• The patient’s neuromuscular system that naturally drives ventilation

 These components may, however, be broken down into smaller components that can be
individually described by simple mathematical relationships. These relationships typically contain
algebraic as well as dynamic components.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

3

 To control mechanical ventilation, a useful model must contain parameters that have a direct link
to physical elements in the system. The model must behave very closely to the real system
regardless of the parameters chosen.

 Historically, strictly linear models were employed, which were useful when analytically deducing
overall effects of various parameters on the behavior of the system. For simulation, however, the
exclusion of nonlinearities also excludes certain characteristics observed in real systems, such as
saturation effects and limit cycles, which are important considerations in ventilator controls.

 In the clinical environment, the patient’s anatomy, valves, circuits, and other components of the
ventilation system may not be well defined. Disease or injury can add a further degree of
complexity to the problem. For this reason, among other obvious reasons, the design and
evaluation of ventilator controls is most often done using mechanical devices that emulate the
elastance and resistance of a lung. These devices include fixed isothermal compartments, as well
as adjustable spring loaded bellows. Developing a simulation model can help bridge the gap
between mechanical devices and actual clinical application. Complex features are much easier to
implement in simulation.

 As with any physical system, it can be described mathematically by examining individual
components. In the ventilator/lung system, each physical component is looked at in order to
describe how parameters of each component interact with flows and pressures in the system.

Patient Circuit
 The patient circuit is where control of pressure and flow takes place since this is typically where
pressure is monitored. The patient circuit is the conduit that provides the transfer of flow from the
ventilator to the patient and from the patient to the atmosphere,

 Much like a spring’s elastic properties allow it to store energy by deflecting its coils, a closed
compartment can store energy by introducing gas volume. In a spring, a set deflection stores a
fixed force. In the closed compartment, an introduced volume creates a set pressure. Neglecting
temperature effects, the closed compartment has a near linear relationship between introduced gas
volume and pressure. The change in pressure with respect to change in volume is constant and
known as the elastance of the fixed container. If the walls of the container remain rigid and fixed,
this relationship holds true. If, however, the walls are flexible, and deflect as volume is added, a
nonlinear relationship occurs between flow and pressure. The patient circuit can be modeled using
the properties of either rigid or semi-flexible compartments.

 Most analytical studies that model mechanical ventilation have entirely neglected the effects of
patient circuit dynamics. Consideration of the patient circuit elastance is essential to provide a
realistic response. Resistance of the circuit should also be considered when the circuit is highly
restrictive and the controlled pressure is at the patient Y. This is almost always the situation when
neonatal circuits are used.

 The patient circuit typically consists of long lengths of tubing for both the inspiratory and
expiratory leg. This can impose significant process delays with respect to both sensing and
actuation of pressure and flow. The delay imposed is governed by the speed of sound: about 1 ms
for every foot of circuit.

 The patient circuit compresses or expands gas based on flow being introduced by the flow supply
valve or vented by the exhalation valve, respectively. For the most part, circuit elastance is
primarily the elastance of the gas within the circuit compartment. Thus, pressure is linearly
proportional to volume introduced to the fixed geometry. For some patient circuits, which may not
have very rigid walls, the length or diameter of the circuit may change slightly with increasing
pressure, causing a nonlinear relationship of pressure to volume (nonlinear elastance).

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

4

 For a rigid walled patient circuit, disregarding circuit resistance, the model can be written as

P E Q Q dtC C p L= ⋅ −∫ ()

 Figure 2 shows the block diagram representation of the above equation.

Figure 2: Patient circuit block diagram

Endotracheal Tube
 The endotracheal (ET) tube, which links flow between the patient circuit Y piece and the patient’s
upper airways, gives the system its strongest nonlinear characteristic relating the delta-pressure
and flow parameters. Although nearly exact relationships can be described by writing the
compressible gas equations for continuity, state and energy, this description can become quite
complex and cumbersome. For nearly all ET tube sizes, a simple parabolic relationship for flow
and pressure provides an accurate description within 1 or 2%.

 ET tubes are flexible, and depending on curvature during insertion may have more or less
resistance, but these effects are minimal with respect to the fundamental characteristics. Tube
diameter sizes range from 2.0 to 3.5 mm (neonate) to about 4.0 to 5.0 mm (pediatric) to 5.5 to
10.0 mm (adult). Both the diameter and length of the ET tube effect the resistance to flow.
However, the range of possible diameters has more of an effect on the parabolic flow constant
than length. The smaller the diameter, the larger the size of the parabolic constant.

 The parabolic constant directly effects the time constant of the lung (albeit nonlinear time
constant). The possible range of parabolic constants represents a span of three orders of
magnitude. This creates time constants that vary with the same degree of severity. For a simple
closed-loop pressure circuit with a fixed gain, uniform performance over such wide range of load
conditions cannot be expected. This is the crux of the problem in ventilator controls. The control
must either be more than simple or at least very clever.

 Considering the nonlinear relationship, and that flow through the ET tube is bi-directional, the
equation for the ET tube becomes

P P K Q QL L L LC − = ⋅ ⋅2 sgn()

 Figure 3 shows how this equation is represented in block diagram form.

Figure 3. Endotracheal tube block diagram

 Studies using VisSim reveal that some of the slow limit cycles observed in ventilation controls
may not be due to valve seat properties, but rather to a closed-loop near resonant condition and the
nonlinear resistance of the ET tube. Without this nonlinearity present, stable oscillations dissipate
energy and eventually settle towards a point of equilibrium. Unstable oscillations expand towards

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

5

infinity. If the nonlinear resistance is introduced, the oscillations expand but reach a bounded
amplitude. These sustained oscillations are known as limit cycles. In simulation, limit cycles
persist in situations where the dynamics of the valve mechanisms have been totally removed.

Flow Valves
 Control of the flow of gas into and out of the lungs is typically done by separate flow supply
valves and exhalation valves, respectively. These valves are actuated by motors or linear
actuators.

 For a flow supply valve, upstream pressure on the valve is high relative to downstream pressure
and is fairly constant. In this situation, the flow source is of low impedance, and the delivery of
flow is not so sensitive to downstream loading. The model for the valve can usually be considered
a function independent of the pressure differential.

 Assuming a look-up table is used in the final design to linearize gain, or that flow feedback is
used, the flow to command relationship can be treated as a simple constant. The dynamics of the
actuating device and/or flow feedback loop should also be included. This is most often a DC
motor, stepper motor, or linear voice coil actuator feedback loop for valve actuation. The equation
describing a flow supply valve is written as

Q K v H sv v i= ⋅ ⋅ ()

 Figure 4 shows the block diagram of the equation.

Figure 4. Flow supply valve block diagram

 Unlike the flow supply valve, the exhalation valve upstream (circuit) pressure is not much higher
than downstream (atmospheric) pressure. In this case, the flow source is of relatively high
impedance and is effected by the load. For the exhalation valve, the model can be written using a
parabolic relationship between differential pressure and flow with a “variable” coefficient that
represents the flow control area. Assuming atmospheric pressure is constant, the expression for
the exhalation valve can be written as a function of circuit pressure. Of course, like the inspiratory
valve, the dynamics of the actuating device should also be considered. The equation describing an
exhalation valve is written as

Q A v P H sE o c e= ⋅ ⋅() ()

 Figure 5 shows the block diagram representation of the equation.

Figure 5. Exhalation valve block diagram

 Because of the substantial difference in the flow-pressure relationship in the two valves, two
separate control loops are required. During exhalation, pressure is measured in the circuit, and
depending on the particular method of ventilation, is controlled by releasing gas to atmosphere
through the exhalation valve while the inspiratory flow valve is either off or fixed to a constant
value of flow. During inspiration, the exhalation valve is shut off and the inspiratory flow valve is

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

6

controlled in feedback with the pressure measurement. More advanced methods of ventilation
may require that both control systems be active simultaneously.

Patient Resistive Airways
 In addition to the resistance created by the ET tube, patient airway resistance must be considered
in the actual clinical application. This resistance can be further grouped into the “upper” airway
resistance imposed by the trachea and upper branches, and the “lower” airway resistance imposed
by the minute and numerous branches that lead to the alveoli. All these passages are subject to
change both during the course of a breath and over longer periods of time. Other than the typical
nonlinear relationship of the pressure drop to flow through conduits, additional time varying
resistance changes may occur in the airways due to mucous, blockage, injury, or deformation of
the anatomical structures. These effects are often unpredictable, unrepeatable, and difficult to
define. They can, however, be approximated in simulation by perturbing the selected parameters
with bounded variations created by noise sources passing through filters representing a specific
power spectral density (colored noise) or by designing a random event generator for discrete or
sudden events. Such modeling can prove useful in determining, for example, the reaction of the
control system to coughing or Cheyne-Stokes breathing.

The Lung as an Elastic Compartment
 The lung is a compartment with flexible walls that significantly expand as volume is introduced.
Thus, as described in the section on patient circuit, the lung follows a nonlinear relationship as
described above. This nonlinear relationship of pressure to volume typically follows an “S” curve,
as shown in Figure 6.

Figure 6. Pressure volume relationship in human lung

 The lungs are enclosed in a cavity between the parietal and visceral pleura. The diaphragm and its
actuating muscles cause the intrathoracic pressure within this space to drop below atmospheric
pressure. This causes the lungs to expand and air to be drawn down into the trachea and numerous
spaces beyond. The degree of elasticity of the lung with respect to the strength of the
diaphragmatic muscles effects the ability of the patient to draw in an adequate volume of gas.
Elasticity of the lung can be effected by various diseases and /or injuries . A stiffer lung (larger
elasticity) makes it more difficult for the patient to draw in gas.

 In the clinical test lab, the “S” curve relationship that exists in a real lung is often difficult to
emulate using linearly elastic test lungs. Simulation provides a way to overcome this problem.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

7

 For a linearly compliant lung, the equation is written as

P E Q dt PL L L M= ⋅ +∫
 The corresponding block diagram for this equation is shown in Figure 7.

Figure 7. Linearly elastic lung equation block diagram

 To simulate a nonlinear elastic lung, the data shown in Figure 6 can be curve fit to obtain
coefficients for a polynomial, or a sufficient number of data points can be taken as a table and
used by VisSim’s ��� block. The ��� block linearly interpolates between data points to provide a
continuous relationship in the simulation. The block diagram for the nonlinear elastic lung is
shown in Figure 8.

Figure 8. Nonlinear elastic lung block diagram

Respiratory Drive
 Contraction and relaxation of the patient’s diaphragmatic and thoracic muscles provide a cyclic
pressure differential from within the lung to atmosphere, causing flow to enter and exit the lung.
The driving signal for the muscle groups is a complex function of chemical and physical
relationships in the patient. The controlling signal for the respiratory drive constitutes an
additional, complex feedback loop that may interact with ventilator pressure and flow control
systems, possibly leading to an overall undesirable response. In some cases, this interaction can
cause the patient to fight with the ventilator.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

8

Model Construction
 For a “lumped parameter” model, several configurations can be considered by either including or
excluding certain elements or components. For example, the patient circuit elastance can be
included or the simple linear R-C model can be used. A simple ET tube resistance or the nonlinear
characteristic can be used. To begin, consider the following electro-acoustic analogy of the lung-
patient circuit shown in Figure 9.

QP

QV EC

QE

PC PL

PM

EL

QL

KL

Figure 9. System circuit analogy

 QV Flow from inspiratory valve

 QE Flow venting exhalation valve

 QC Net flow

 PC Patient circuit pressure

 KL Parabolic flow constant of ET tube

 EC Circuit elastance

 PL Pressure in lung

 EL Lung elastance

 QL Flow into lung

 PM Respiratory drive pressure

 In this circuit analogy, EC can be set to zero to ignore patient circuit elastance. KL can be
considered a constant for a linear ET tube resistance or as a function of QL for the nonlinear
model. The analogy provides a structure to visualize the behavior of flow delivery to the lung and
the effects on pressure. Once a simulation is constructed, the behavior can be quantified precisely.

 QP, the net difference of flow delivered and flow vented (QV minus QE), is split into QL, the flow
which enters the ET tube, and the remaining flow which compresses the gas within the patient
circuit elastance. The compression of this remaining flow causes the circuit pressure, PC. Note that
if QL is zero, an equilibrium in pressure exists between the circuit and lung elastance. If KL is
relatively small, this equilibrium adjusts itself much faster than when KL is larger. If EC is not
considered, the rise in circuit pressure is instantaneous.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

9

Constructing the VisSim Block Diagram
 Using the component descriptions, and the electro-acoustic analogy, a block diagram can be
constructed in VisSim for simulation. If a nonlinear model is chosen, the block diagram shown in
Figure 10 is the result.

Figure 10. VisSim simulation model of ventilator/lung system

 To characterize the nonlinear resistance, actual ET tubes ranging from 2.5 mm to 9 mm are
connected to a motor-driven flow source. A flow transducer is connected in line, as well as an
upstream pressure transducer. VisSim is then used to automatically ramp the flow and acquire
flow and pressure data for each ET tube size. The data is used to determine the parabolic flow
constant for each ET tube. The parabolic flow constants are plotted against their respective ET
tube diameters, and the data is processed through a regression analysis to determine a best fit
polynomial. From this polynomial, a VisSim block is constructed that calculates an appropriate
parabolic constant given the ET tube diameter.

Model Simplification
 One of the goals of the model is to keep it as simple as possible, without compromising realistic
behavior. One method for deciding model complexity is to construct several models, each
including or excluding various components, and compare the response of these models with the
response of the real physical system.

 For the ventilator/lung system model, four lung models can be constructed:

• A simple linear RC model

• A nonlinear RC model

• A linear RC model including circuit elastance

• A nonlinear RC model including circuit elastance

 A very simple PI feedback controller is constructed, duplicated, and connected to each model. A
fifth feedback controller is duplicated and connected to real-time pressure measurement feedback
and real-time output. The fifth controller controls actual valve flow to a mechanical test lung. The
controls are de-tuned to purposely overshoot and excite transients. ET tube sizes and mechanical
lung elastance are varied with matching simulated lung and circuit parameters to determine which
model best compares to the real-world response. Figure 11 illustrates a sample comparison run for
one of the various lung conditions.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

10

Figure 11. Model comparison

 By varying parameters of resistance and compliance, and observing response, the following
conclusions can be made:

• RC models without circuit elastance, whether linear or nonlinear, do not adequately model
response in most cases. Circuit elastance is necessary to obtain the type of dynamics observed
in real feedback systems.

• For systems that experience minor changes in flow and pressure, there is little difference
between the linear and nonlinear models except when resistance is very high. In general, for
systems that experience major changes in flow and volume, it is important to include the
nonlinear behavior of the resistance and elastance. Generally, dynamic behavior is more
sensitive to the resistive components than elastic components.

 By making these comparisons in VisSim, it can be seen that over the range of possible parameter
variations the patient circuit should be included along with the nonlinear ET tube model. Thus, the
circuit analogy shown earlier in Figure 3 represents a fairly good descriptive model.

 When considering infant applications, the resistance of the patient circuit becomes a significant
factor, especially if pressure, measured at the flow or exhalation valve is to be used in feedback.
Nonlinear resistive elements similar to the ET tube resistance, but representing circuit resistance,
should be inserted in series with each flow source. The parabolic flow constants for each leg of
the circuit should be determined by running a characteristic pressure vs. flow test. The resulting
data can be used to estimate the constants.

Using the Model in Simulation
 Now that a block diagram model of the ventilator /lung system has been developed and verified
with an actual system, it can be applied towards the design of feedback controls with the goal that
these feedback controls will be applied in the final product as software (code) running in a real-
time embedded processor.

 Before beginning to design any feedback controls, the block diagram model can be used to
explore properties that would otherwise be difficult or impossible to investigate in the real
lung/ventilator system. This type of exploration can provide insight and a deeper understanding of
the system. Certain fundamental behaviors are revealed that guide the designer towards the
selection of particular control methods.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

11

Investigating More Complex Properties of the
Lung/Ventilator Model
 With a fairly accurate and consistent model in simulation, complex properties can begin to be
explored such as the effects of nonlinearities under feedback control.

 Without feedback controls, the passage of flow through the patient circuit to the lungs is a stable
process free of resonant dynamics. With feedback, however, there is a trade-off between fast
accurate control and stability. The trade-off would be trivial for a motion control system with a
fixed load. Assuming the use of linear controls in ventilation, however, the wide variation of ET
tube sizes, lung elastance, and patient circuits will make the system slow and sluggish at one
extreme and highly oscillatory at another.

 The parameter of circuit elastance is crucial to the structure of the model reinforces the idea that
the system is dominantly a two compartment or second order system. When the ET tube becomes
less resistive, the system breaks down into what appears like a single compartment and the closed-
loop dynamics behave extraordinarily differently.

 In an actual ventilator system, dynamic behavior is often subdued by saturation limits of the
control elements, or breath phase cycling criteria. Valves either supply flow or vent gas to
atmosphere, but usually not both. In simulation, hypothetical situations without limit can be set
up. For example, a valve that can both vent flow as well as supply it. Such extensions to the real
world in simulation can provide a better understanding of what is actually occurring. The plots in
Figure 12 show a step response for a low resistance, stiff lung, the first using a realistic flow
valve, and the second using a hypothetical valve that sinks flow as well as sourcing it.

Figure 12. Comparison of closed-loop pressure response between system with and without
hypothetical flow valve

 Under feedback control, the real valve shuts down rapidly and the pressure locks up at a level
above the intended trajectory. In attempting to correct the design, the gain can be increased, which
for this particular lung, does reduce the steady state error. The problem with increasing the gain is
that this control will harshly oscillate if a resistive ET tube is introduced. The hypothetical valve,
which allows gas to be vented as well as supplied, shows that the dynamics are oscillatory at a low
frequency. This indicates that a more robust control structure should be employed.

 In controlling set pressure values with the exhalation valve under constant bias flow, one of the
problems often encountered is low frequency, persistent oscillations. These oscillations can be
uncomfortable for the patient, as well as interfere with breath triggering systems in the ventilator.
Historically, these oscillations have been attributed to the dynamics of the exhalation valve;

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

12

however, studies in VisSim have shown that they could be limit cycle oscillations. These limit
cycles are caused by the two compartment system connected by a nonlinear resistance and
subjected to pressure feedback. The nonlinear resistance (ET tube) is the primary cause of the
limit cycles. An experiment was done in VisSim where the exhalation valve dynamics were
removed (made infinitely fast). With a hypothetical linear resistive ET tube, induced oscillations
would either die out or expand depending on the controller gain. Limit cycles are not possible
using a linear resistive (simulated) ET tube; the oscillations either expand or die out. Limit cycle
magnitude is larger with the lower resistive tubes, the same as observed in a real ventilator. Figure
13 shows a phase plot (pressure vs. flow) of a limit cycle observed in the study.

Figure 13. Limit cycles caused by nonlinear resistance

Programming VisSim for Embedded Applications

Hardware-in-the-Loop Simulation
 Desktop engineering now includes the realm of real-time hardware-in-the-loop simulations. The
ability to design and test controls before designing hardware and software speeds up product
development, reduces development costs, and ultimately provides a better product to the
customer. In practice, it is as easy as installing a compatible data acquisition card in a PC and
wiring it to the system sensors and actuators.

 Very often, development of products that require control and an embedded processor are carried
out using the processor itself as the development platform. This method of development requires
the controls to be written up front, in the language of the processor, which may be assembly or, at
best, a high level language, such as C. Even with a high level language, the control development
requires a control engineer proficient in software, a software engineer who understands control
design, or the two working together with mutual understanding.

 Of even more concern is the difficulty of debugging the design. Sometimes it is hard to narrow
down the cause of an inappropriate system response. Is the problem a control design bug or
software bug? Iterations can be numerous as well as lengthy before a final design is reached.
Separating control design development from software design development reduces this
uncertainty and allows each engineer to focus on issues within their discipline. Hardware-in-the-
loop simulations allow this separation, and together with VisSim, the PC serves as the means for
doing so at relatively low cost. VisSim’s GUI environment allows rapid development and testing.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

13

More iterations in a shorter time frame are possible, and greater continuity in the thought process
is achieved. The control designer can focus on the control design, not writing, compiling, and
debugging code.

 VisSim/Real-TimePRO is an interactive real-time data acquisition and control add-on option to
VisSim. It provides drivers for numerous boards from popular manufacturers for various
applications: analog input, analog output, thermocouple interface, digital I/O, and motor
controller/ resolver interfaces.

 Before beginning, it is a good idea to review some considerations when building real-time
feedback controls in either the PC or embedded environment.

Aliasing and Filtering Measurements
 For applications involving real-time feedback control with hardware-in-the-loop, it is important to
consider problems that arise as a result of sampling and sampling signals that contain noise at
frequencies that exceed half the sampling rate. Many questions about aliasing that are not
considered in this tutorial are answered in Digital Signal Processing by Oppenheim and Schafer.

 When sampling flow and pressure for feedback control, or any other sampled measurement for
that matter, it is imperative to consider the effects of aliasing and provide adequate filtering to
prevent such problems. High frequency noise that is allowed to be sampled by the A/D converter
can appear as an aliased (lower) frequency in the sample band. The control loop sees the aliased
signal as an actual perturbation on the measurement and attempts to correct for it by actuating the
valve. Response to the aliased signal propagates noise into the control loop. Depending on the
amplitude and frequency of the noise, it can create disturbances anywhere from low level jitter to
significant oscillations.

 Quite often engineers not familiar with the mechanism of aliasing, “filter” the input measurements
by processing the converted signal through a software filter; however, aliasing has already
occurred at the A/D, and sneaks right past the software filter in the passband. Digital filtering is
not only ineffective in removing effects of aliasing, but also adds additional and unnecessary
phase lag to the control loop. The only way to effectively prevent aliasing is to use a hardware
filter before the A/D converter.

 The application of anti-aliasing filters in the hardware-in the-loop simulation should carry over to
and be incorporated as part of the final embedded design.

Verifying Real Time in VisSim
 Another important issue is whether all the calculations are completed within the allotted sample
period. At present, VisSim provides no warning except a message at end of simulation whether
the computations performed exceeded real-time capability of the host processor. If the Auto-
Restart (continuous) and Real-Time options are activated, it is recommended to see if the rate that
has been specified in VisSim’s Simulation Setup menu is being achieved by first disabling Auto-
Restart then performing a single run. Although the end of simulation message does provide
numbers for real-time and simulation time, these measurements are not very accurate. It is better
to measure real-time against simulation time directly by comparing them on a plot.

 To run a real-time test, enclose a ���� block within a compound block. Activate the XY plot and
Discrete plot options, and select a number of points to exceed the total steps for the simulation
by 1. Plot the output of a ����	
�� block on the vertical axis and on the horizontal axis, plot the
output of a ���� block multiplied by 1,000. Activate the Fixed-Axis option in the ���� block and
set the coordinate span for the simulation range multiplied by 1,000. Run the simulation with Auto
Restart deactivated. The plot should appear as a staircase line from 0 to the range end in
milliseconds without overrun, underrun, or any breaks or discontinuities. Figure 14 shows how
the output should appear.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

14

Figure 14. Checking for proper system timing in VisSim

 By checking timing this way, a very fine resolution can be achieved, and intermittent or discrete
events (such as, background processing or TSRs), which may be occurring and effecting real-
time, can be detected. While adding to a design, it is best to check periodically to verify system
resources have not been exceeded. VisSim release 3.0 is expected to include a monitor on the
status bar that will alert the user in the event of timing problems, should they occur. The method
described above can detect these problems, as well as help diagnose their cause.

 To obtain as much bandwidth as possible in the PC, disable screen savers and terminate network
operations such as local backup or sharing operations that can cause glitches in the real-time
operation. If the chosen step size is overrun, a larger step size can be chosen if possible, or the
design can be edited to remove blocks that tend to eat up excessive time. Such blocks include
�
�����, ���
������� and �
����. Plots that specify a large number of points also eat up
time, so it is best to keep the number of points at a minimum. Fix the bounds on ���� blocks
where possible. When auto-scaling occurs, significant time is lost, and this can cause the control
to suddenly jump. If Auto Restart and Retain State are activated in the Simulation Properties
menu, continuous and smooth operation can be achieved, but the retrace of a ���� block can
sometimes cause small “hiccups” at the start of each cycle as the plot is re-drawn. One way to
minimize these effects by the ���� blocks is to enclose the plot in a compound block to hide it
from the top level. Data can be recorded and viewed after the simulation is stopped.

 Note: In VisSim 2.0, ��
��� blocks suspend the simulation if operated during a run. In VisSim
3.0, real-time ��
���� prevent suspension.

 Other ways to speed up the simulation include:

• Use 32-bit VisSim

• Use a PC with a faster clock rate

• Use a faster graphics card and/or add more video memory

• Convert all or some of your application blocks to DLLs

• Use VisSim/DSP options

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

15

Step Rate Selection Considerations
 The step rate must be selected to accommodate the bandwidth of the closed-loop design.
Theoretically, the sampling rate should be at least twice the rate of the highest frequency in the
desired closed-loop system. This is only practical, however, for applications where an
interpolation (reconstruction) filter can be employed. For feedback applications, it’s best to
choose a rate at least 5 to 10 times faster. Consider also that the rolloff of the anti-aliasing filter
must be such that sufficient attenuation is achieved at half the sampling frequency. If the sampling
rate is increased, it opens up the measurement band to more ambient noise. The chosen step rate
must be fast enough to provide information at the rate required, but not too fast to admit excessive
measurement noise. For an extensive treatment of sample rate selection, refer to Digital Control of
Dynamic Systems by Franklin and Powell.

 When running applications in VisSim with the Run in Real-Time option selected, the speed of
the system is paced by a real-time clock. This option should be selected when designing real-time
controls. If the selected step rate is 1 ms or slower, VisSim uses the Windows system clock to
pace the system. If a faster step rate is selected, VisSim reads real-time clocks provided by the
data acquisition hardware to pace the system. After the clock is selected, a real-time test should
be run, as described in the previous section, to test the uniformity of the clock. Step rates slower
than 1 ms should be selected in 1 ms increments. If a step rate of 1.3 ms was selected, the real-
time simulation would run, but possibly with erratic timing.

Using transferFunction Blocks
 The implementation of differential equations can be done by either constructing them with
integrator blocks or by direct use of the �������������
�� block. In VisSim,
�������������
�� block output is calculated using a matrix series expansion to calculate the
state transition matrix. If integrators are used to realize the �������������
��, integration of
the states is done using the integration algorithm selected in the Simulate/Simulation Setup dialog
box. This causes the �������������
�� method to be less sensitive to the chosen step rate. If
the goal is to eventually transfer the design to embedded controls, it is best to start with
integrators.

Choice of Integration Method
 If the control design is to be transferred to an embedded system, then it is best to avoid using the
integration methods supplied by VisSim and instead write the controls as difference equations
using ��
����� blocks. For control applications, the simplest, stable integration method to use
is backward rectangular (Euler) integration.

 y n Tx n y n() () ()= + −1

 This method assures that any poles in the left half s-plane are mapped within the unit circle in the
z-plane. Although VisSim supplies two Euler integration methods (Euler and backward Euler),
neither is satisfactory for control applications. The Euler integration method is actually forward
Euler, which could map poles outside the unit circle leading to instabilities. The backward Euler
(stiff) method uses a matrix-relinearization of the data and is too slow for practical real-time
applications.

 For a quick start, however, the forward Euler method can be used to get a rough idea of the
response. This should be followed up by replacing the continuous integrators with discrete
integrators that implement straight backward rectangular integration.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

16

Transferring the Control Design
 Once the control design is proven to meet its performance specifications by hardware-in-the loop
simulation, the next step is to port the design into the embedded system. Development trends are
strongly leaning towards a system that will provide automatic generation of code for any given
platform, but there are still many issues that must be addressed before this can be flawlessly
achieved.

Selecting an Embedded Processor
 As mentioned before, control design is often done directly in the embedded environment at the
same time code is written. In this situation, selection of an appropriate processor is done
beforehand, based on a best guess estimate of how much speed will be required by the algorithms.
If misjudged, this could result in a more-expensive-than-necessary processor, or worse, a
processor unable to handle the processing load. Guessing can lead to loss in engineering time, as
well as substantial development tool investments. It is much more efficient and cost effective to
design the controls, test their performance, and then based on more exacting needs of the
algorithm, choose the appropriate processor.

 To select the embedded processor, a common measurement between the process run in the PC
environment and the one run in the embedded processor environment must be found. Factors that
exist in the PC environment, such as system and application processing overhead, as well as
higher number precision, must be taken into account.

 Overhead processing in VisSim accounts for approximately 5% of the time slot, but can be
accurately measured by comparing real-time with simulation time measurements. This
measurement is easily made in VisSim by plotting the output of the ����	
�� block against a
���� block. Note that this overhead includes the measurement operation itself, and to maintain
this constant, the measurement calculations should be included with the simulation calculations.

 Manufacturers of processors sometimes publish benchmark algorithms and their results. These
same algorithms can be run in VisSim, and a performance ratio can be calculated to relate the two
operating environments. Of course the benchmark should contain similar operations that will be
run in the final control algorithm.

Modular Programming
 Good software practices universally recognize the importance of modularity to provide
organization for ease of understanding, maintainability, and the ability to reuse existing processes
or algorithms. VisSim compound blocks and ����� blocks provide design modularity but also
add to it a new dimension.

Compound blocks
 Compound blocks allow the design to be created using a bottom up or top down approach. For
example, a problem can be approached by either building each compound block and then
connecting them to form the complete system, or constructing the overall system connections with
less detail, corralling components together as sub-modules and then adding detail within the
compound blocks. Both approaches are valid; the choice depends on the application.

 By using compound blocks, processes can be grouped and organized to improve understanding
and reduce the likelihood of mistakes. Compound blocks provide a hierarchical structure to the
design. Top level components show major connectivity; successive layers reveal local complexity.
Hierarchical modeling is easy to build, easy to understand, and easy to maintain.

 Unlike programming in C, using VisSim allows a designer to begin by piecing blocks together to
create an entire process, and then grouping the elements into organized sub-processes with

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

17

compound blocks. Using this approach sometimes reveals system structures that perhaps would
not have been so apparent had the simulation been written in a script language. The visuality of
VisSim provides this distinct advantage over script languages.

Embedded blocks
 It is often the case that a sub-model is used repeatedly in many diagrams. Using VisSim’s �����
block, a copy of the sub-model can be embedded in any diagram. The copy has all the
functionality of the original sub-model; however it cannot be edited. Only the original sub-model
can be edited, and those changes are automatically propagated to all the diagrams that use the
embedded sub-model. Use of ����� blocks provide greater control and ease over the revision
process.

Tracking Product Development
 To track product development, a revision history can be attached to any block diagram created in
VisSim. This is particularly important for large projects that span multiple engineering groups.
Author names and comments can be included, as well as longer, more descriptive diagram names.
Statistics about the block diagram, such as its size and last date of modification are also included.

Working with Variables
 Although it is possible in VisSim to build complete systems using only wire connections between
blocks, ���
���� blocks should be used to simplify and clarify connections where possible. In
VisSim, a variable name can be up to 22 characters in length, making the use of meaningful
variable names easy.

 VisSim contains three types of variables:

• Built-in variables designated by a “$” prefix

• Local variables designated by a “:” prefix

• Global variables (all other names)

For discrete control designs that require one or more clocks, it is best to synchronize all the clocks
from the basic built-in variable ��
������. Clocks can be built from the ����� ���������
block, with a second input that allows external input of the pulse interval. The first input is pulse
delay which is normally set to zero.

Local variables are only passed at the level at which they are defined, meaning they are not seen
outside compound blocks in which they are defined, nor within inner compound blocks. When
designing functional blocks, it is best to use local variables to maintain modularity. Global
variables are passed throughout the entire diagram, recognized at any compound block level.

Cut and paste operations of blocks that contain variables with input definitions can cause multiple
references. These are handled by VisSim by redirecting the variable name to an unused memory
location. Thus if the variable ���������
�
�� were to be copied as a multiple reference, VisSim
would rename it as ���������
�
���� ! for example. It is therefore important to review the
variable list especially after cut and paste operations. This can be done easily using the variable
find feature and searching the list for “@” symbols in the variable names. If local variables are
used in all functional blocks, redirection should not occur.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

18

Discretizing the Design
VisSim uses floating point numbers and all block operations are done in floating point precision.
Most embedded applications using inexpensive processors require the design to be converted and
run with integer processing. Beyond the fact that signals and constants will likely have to be
scaled to fit the processor word size, problems such as overflow and truncation error, and
quantization noise may degrade performance from the initial floating point design.

If these problems are an issue, the system should be rescaled in VisSim, all filters and integrators
should be built as discrete equivalents using delays, and quantized signals should be used where
appropriate. By doing so, degradation can be assessed, corrections made before the design is
transferred to software engineering.

In VisSim, quantization blocks can be used to simulate a quantized signal and can provide a
measure of how quantization effects accuracy and performance. VisSim 3.0 provides the
capability to select number types in either floating point or fixed length integer.

In most embedded applications with appreciable bandwidth and controller complexity, floating
point is prohibitive unless the processor handles floating point in hardware and is very fast. High
volume, consumer and commercial products usually cannot use such a processor because of cost
limitations. The mandate for a more inexpensive processor can dictate the requirement to
implement the design in integer. Thus once a design is proven in floating point, it must be
discretized unless originally implemented in integer. In VisSim this means replacing
�������������
�� and
��������� blocks with equivalent functions using ��
�����
blocks, and transcendentals with approximations as needed. Upcoming versions of VisSim
promise to provide data type specification which will extend its capabilities in the design
verification process before writing code.

Although �������������
�� blocks in VisSim can be designed as discrete as well as
continuous, if the design is to be transferred by means of written documents or specifications, it is
better to implement directly with ��
����� blocks. The �������������
�� blocks are
specified by coefficients in the Z-domain, but designing with ��
������ is directly reducible to
difference equations. For most programmers it is easier to interpret diagrams written with
��
����� blocks; z-transforms typically take some explaining.

Once the design is discretized, it must be communicated to the programmer for coding. This can
be done in a number of ways. Flow charts can easily be written from well organized VisSim
diagrams. Or step-by-step lists of equations and pseudo-instructions can be provided, but with
little instruction it is relatively easy for programmers to read directly from the block diagrams.
Using the block diagrams themselves eliminates having to produce an intermediate document and
reduces the likelihood of mistakes.

The C-Code Generator for Real-Time Control Applications
VisSim/C-Code was originally provided to allow users to write their own routines in C, create a
corresponding dynamic link library (DLL), and use these routines as custom blocks in the VisSim
environment. This provided an increase in speed of operation and a means to integrate previously
developed software routines with VisSim. Recent developments in VisSim/C-Code are now
providing new applications including automatic DLL source generation and direct portability to
the TMS320C32 DSP. These capabilities open up new real-time applications for VisSim.

VisSim Tutorial Series: Biomedical Systems: Modeling and Simulation of Lung Mechanics and
Ventilator Controls Design

19

References
Borrello, M. A. 1991. Modeling and simulation of pressure regulated control systems for
ventilation of the lung. Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, vol. 13, no. 5:2178-79.

Borrello, M. A. and D. W. Guillaume. 1991. Simulating gas flow through the exhalation leg of a
respirator’s patient circuit. Journal of Biomedical Engineering. 13:77-82.

Campbell, D. and J. Brown. 1963. The electrical analog of the lung. British Journal of
Anaesthesiology. 35:684-93.

Franklin, C. F. and J. D. Powell. 1981. Digital Control of Dynamic Systems. Massachusetts:
Addison Wesley Publishing.

Jacquez, J. A. 1979. Respiratory Physiology. Hemisphere Publishing Corporation, et al.

Oppenheim, A.V. and R.W. Schafer. 1975.Digital Signal Processing. Englewood Cliffs, N.J.:
Prentice-Hall.

Otis, A. B., C. B. McKerrow, R. A. Bartlett, J. Mead, M. B. McIlroy, N. J. Selverstone, E.P.
Radford, Jr. 1956. Mechanical factors in the distribution of pulmonary ventilation. Journal of
Applied Physiology. 8:427-42.

