
VisSim Tutorial Series

Fundamentals of
Mathematical Modeling

and Simulation

Peter Darnell, president, Visual Solutions, Inc.

Arun Mulpur, product manager, Visual Solutions, Inc.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

ii

VisSim Tutorial Series

Fundamentals of Mathematical Modeling and Simulation

Copyright ©1997 Visual Solutions, Inc.

All rights reserved.

Trademarks VisSim is a trademark of Visual Solutions.

Excerpted with permission from Modeling and Visual Simulation in Industry, A. Mulpur and
P. Darnell, International Thomson Computer Press, Boston, MA, 1997.

The information in this document is subject to change without notice and does not represent a
commitment by Visual Solutions. Visual Solutions does not assume responsibility for errors that
may appear in this document.

Other books in the VisSim Tutorial Series include:

• Biomedical Systems: Modeling and Simulation of Lung Mechanics and Ventilator Controls
Design. Mike Borrello, Metran America, Inc.

• Heating, Ventilation and Air Conditioning (HVAC) Controls: Variable Air Volume (VAV)
Systems. Nebil Ben-Aissa, Johnson Controls, Inc.

• Introduction to 6-DOF Simulation of Air Vehicles. Robert Josselson, ITT Aerospace Systems
Group.

• Simulation of Communication Systems. Eugene Estinto, Eritek, Inc.

• Simulation of Motion Control Systems. William Erickson, Indramat-Rexroth.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

iii

Table of Contents
Problem Statement.. 1

Physics of Objects Colliding in One Dimension ... 2

Development of Mathematical Model ... 5

Force Balance ...5

Net Frictional Force..5

Collision Detection ...6

Setting Boolean Variables ..8

Computing Post-Collision Velocities ...8

Enforcing No Movement on Zero Velocity ..10

System Dynamics ...11

Setting Initial Conditions Externally for Integrators ..12

Integrating Velocities to Obtain Positions ..12

Calculation of Kinetic Energy ..13

Specifying Simulation Parameters..14

Monitoring Simulated Results ..15

Test Cases ...15

Test Case 3: Conservation of Energy ...16

Test Case 5: Wall Collisions with Rattling Stop ..17

Concluding Remarks .. 18

1

Problem Statement
To better illustrate the principles of modeling and simulation, a system comprising two masses m1

and m2, shown in Figure 1, is considered as a case study. In this system, the motion of the system
components is assumed to be restricted to one-dimension, along the x-axis. The masses slide on a
flat surface, and the coefficients of friction between the two masses and the flat surface are given
by µ1 and µ2, respectively.

Slotted Linkage

m1 m2

x2

x1

f1 f2

g

Figure 1. Schematic representation of the two mass system connected by a slotted linkage

As shown in the figure, the motion of the two masses is constrained by travel stops on either end
of the flat surface and by a slotted linkage that limits the relative displacement of the masses.
Gravity g is the normal force acting between the two masses and the surface.

An external force f1(t) acts on m1. The travel stop, represented by the left wall, constrains the
position of m1, represented by x1, such that it is not less than a minimum value xleft-wall. When m1

collides with the left wall, the block should rebound with a coefficient of restitution rleft-wall.

The mass m2 is subjected to an external force of f2(t). The right wall serves as a travel stop and
constrains the position of m2, represented by x2, to be not more than xright-wall. Upon collision with
the right wall, m2 bounces back with a coefficient of restitution rright-wall.

The slotted linkage connecting the two masses is assumed to be mass-less. It constrains the
relative displacement of the two masses

12 xxxdiff −=

such that it is not less than xdiff-min and not more than xdiff-max. When

x xdiff diff min≤ −

the two blocks collide with a coefficient of restitution, rslot-min. When

x xdiff diff max≥ −

the two blocks collide with a coefficient of restitution, rslot-max.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

2

A model that describes the motion of the two masses subject to given constraints must be
developed. In the event of a collision, the mass velocities after the collision must be computed,
depending on the nature and type of collision. The model must be tested with various forcing
inputs, f1(t) and f2(t), and different system parameter values.

The main parameters of interest are gravity g, coefficients of friction µ1 and µ2; coefficients of
restitution rleft-wall, rright-wall, rslot-min and rslot-max; masses m1 and m2; positions of the left and right walls xleft-

wall and xright-wall; and relative block displacement limits xdiff-min and xdiff-max.

In each case, the pertinent system variables that need to be observed are time t, position of first
mass x1, velocity of first mass v1, position of second mass x2, velocity of second mass v2, and the
total kinetic energy is

2
222

12
112

1 vmvmKE += .

Modeling and simulation principles required to solve this problem are examined next.

Physics of Objects Colliding in One Dimension
The coefficient of restitution is usually defined as the ratio of the forces that resist deformation R,
to the expansion forces R’

’/ RRr =

In a perfectly elastic collision, r = 1 and in a perfectly inelastic collision, r = 0. In the latter case,
the colliding objects stick together after collision and can be considered a single larger object.

In many cases, including the case at hand, the positions and velocities of the colliding objects after
impact are the points of interest. To determine these parameters, it is not necessary to know the
exact magnitude, time variation, and duration of the resistive and restoring forces. Instead, an
arbitrary model for the resistive and restoring forces can be assumed to be as follows.

Considering a two-object system, prior to collision, the two objects are moving towards each
other. It is assumed that the first object has a mass of m1 and a velocity of v1. Similarly the second
object is assumed to have a mass of m2 and velocity of v2. Let us assume that the collision occurs
at time t = 0 and the duration of the collision is τ seconds. In this discussion, R0 is the peak
resistive force at the time of maximum compression. The arbitrary collision model assumes that
there are two phases during the collision: compression and expansion. It is further assumed that
the two phases are of equal duration τ/2. Finally, after collision, the two objects move away or
move together, depending on the type of the collision. The various stages of the two-object
collision scenario are shown in Figure 2.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

3

m2v2m1v1

t < 0

R -R

R’ -R’

m2v2’m1v1’

0 < t < /2τ

t > τ

τ/2 < t < τ

Before Collision

After Collision

Compression Phase

Expansion Phase

Figure 2. Collision of two objects in one dimension

During the compression phase of the collision, the resistive force is given by

R t R t() /= 0 2 τ

and, during the expansion phase, the restoring force is given by

R t rR t’() () /= −0 2 τ τ

Integration of these equations separately from t = 0 to τ/2 and t = τ/2 to τ, respectively, yields

()m v v Rdt0 1

0

2

− = ∫
τ

()m v v Rdt0 2

0

2

− = −∫
τ

and

()m v v R dt1 0

2

’ ’− = ∫
τ

τ

()m v v R dt2 0

2

’ ’− = −∫
τ

τ

Next, two impulse forces ρ and ρ’ are defined as

ρ τ
τ

= =∫ Rdt R
0

0

2

ρ τ
τ

τ
’ ’= =∫ R dt rR

2

0

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

4

The above result, ρ’ = rρ is independent of the collision model assumed, and other models of this
form give the same result. At the time of maximum compression, t = τ/2, there is no relative
motion for either object. At this instant, the two objects move together at the same velocity v0 for
an instant. This allows one to write the following two equations:

m
dv

dt
m

d x

dt
R t1

1
1

2
1

2= = ()

m
dv

dt
m

d x

dt
R t2

2
2

2
2

2= = − ()

Rewriting the momentum equations in terms of ρ and ρ’ yields

()m v v1 0 1− = ρ

()m v v2 0 2− = −ρ

()m v v r1 1 0
’ − = ρ

()m v v r2 2 0
’ − = − ρ

Eliminating the two unknowns ρ and v0, a solution is obtained for the post-collision velocities v1
’

and v2
’
 in terms of m1, m2, v1, and v2 as

() ()
v

m rm v r m v

m m1
1 2 1 2 2

1 2

1’ =
− + +

+

() ()
v

m rm v r m v

m m2
2 1 2 1 1

1 2

1’ =
− + +

+

For the sake of completeness, in the case of a perfectly inelastic collision, r = 0 and consequently

v v
m v m v

m m1 2
1 1 2 2

1 2

’ ’= = +
+

If the two masses are equal, and the collision is perfectly elastic, it follows that

v v1 2
’ =

and

v v2 1
’ =

Based on this knowledge of colliding objects, a mathematical model for the entire system can be
developed.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

5

Development of Mathematical Model
A practical approach to developing a mathematical model involves developing models of sub-
systems and then connecting them together to model a larger system. This section presents the
development of the mathematical model and its VisSim representation in small, incremental, and
interrelated steps.

Force Balance
Considering m1, it is clear that the external applied force f1(t) facilitates the mass to move. Forces
acting on m1 that enable it to resist motion are the net frictional force and the gravitational force.
Similar observations can be made about m2.

Net Frictional Force
If the velocity of the object is zero, the Coulomb friction opposes the applied force until the
applied force is sufficiently large to overcome the Coulomb friction. When the object is in motion,
the frictional force experienced by the object is the sliding frictional force. In this example, it is
assumed that dry friction (static friction) has the same magnitude as sliding friction (dynamic
friction), given by the product of the coefficient of friction and the normal force

f m gf = 1 1µ

If the above requirements are converted into a programming structure, the following rules are
obtained:

• If the velocity is not equal to zero, net frictional force is equal to the sliding friction force:
m1*µ1*g

• If the velocity is equal to zero, the net frictional force is equal to the smaller of the following
two quantities – static friction force m1*µ1*g and the external applied force f1(t) – min (
m1*µ1*g, f1(t))

• The direction of the net frictional force is always such that it opposes the external applied
force f1(t)

In many practical cases, the sliding and static friction forces have different magnitudes. For such
cases, the appropriate values for the sliding and static friction coefficients must be used in the
above structure. The net frictional force sub-system can now be developed in VisSim. At the top
level, it is a compound block with three inputs and one output as shown in Figure 3.

Figure 3. Top-level FRICTION block

The inputs to the compound block are velocity, friction force, and force on block; the output of
the block is the net friction force. In Figure 4, the contents of the �������� block are shown.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

6

Figure 4. Computing net frictional force

As with programming in any language, it is generally not a good idea to perform Boolean equality
comparisons involving floating point values in VisSim. All equality comparisons, such as {��
	
������
��
�����
��
�
���
�����} must first be converted to Boolean inequality
comparisons such as {��
	
������
��
����
����
��
�����
�� <a small value>,
����
�}.

The reason for this is that floating point variables such as velocity are rarely exactly equal to zero,
if they are obtained by solving one or more equations. Consequently, the velocity is compared
with a zero velocity threshold value that is set externally. It is clear that the three rules developed
earlier for computing and applying frictional force are enforced in the VisSim diagram segment
shown in Figure 4.

A word of caution is in order here. The output of the ���� block in VisSim is +1 if the input is
positive, -1 if the input is negative, and 0 if the input is equal to zero. Since the output of the ����
block is multiplying the magnitude of the friction, we must ensure that when the velocity is zero,
the force is unchanged.

Collision Detection
The collision detection logic is considered next. Recalling that xdiff is the difference between the
positions of the two masses

x x xdiff = −2 1

According to the problem specification, if

 xdiff < xdiff-min

or if

xdiff > xdiff-max

the blocks undergo a link collision. Similarly, if

 x1 < xleft-wall

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

7

m1 collides with the left wall; and if

x2 > xright-wall

m2 collides with the right wall. The collision detection logic that performs these functions is
shown in Figure 5.

Figure 5. Collision detection logic

In order to precisely detect the instant of occurrence of a collision, ������
�
�� blocks are used.
To set the ������
�
�� blocks up to perform zero crossing detection, the difference between the
two values to be compared, is computed. This difference is then fed to the ������
�
�� block
such that when the two variables being compared are equal, their difference becomes zero, which
is then detected by the ������
�
�� block.

Since the ������
�
�� block outputs a +1 or a -1, depending on whether the signal crossed the
set point (in this case, the set point is zero), with a positive slope or a negative slope, one can use
the appropriate Boolean logic to convert the ������
�
�� output to a detected collision. So,
whenever a collision occurs, the detection logic generates a pulse and assigns it to the appropriate
variable.

Further, two special cases need to be addressed. When m1 is in constant contact with the left wall,
the collision detection logic must output a series of collision pulses – one for every time step, for
the duration for which m1 is contact with the left wall. Similar logic must be set up for the case
where m2 is in constant contact with the right wall. These cases are addressed by considering that
if the difference between x1 and xleft-wall or x2 and xright-wall is equal to zero, the appropriate collision
pulse must be generated, independent of whether a zero crossing of the xdiff variable was observed.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

8

Setting Boolean Variables
The next step is to use the collision logic to determine the course of action when collisions of
different types occur. From the problem statement, it follows that v1 must be reset when m1

undergoes a left wall collision, or a slot link collision with m2. Similarly, v2 must be reset when m2

undergoes a right wall collision, or a slot link collision with m1. Consequently two Boolean
variables ���� !"�� and ���� #"�� are defined as shown in Figure 6.

Figure 6. Boolean variables for collision detection

Further, since the physics involved in wall collisions is different from that in block collisions,
block velocities and positions must be reset differently, depending on the type of collision. To
facilitate this, two more Boolean variables �����$%�� and �����&���'�
are defined. The
variable �����$%�� is true if { m1 collides with the left wall OR m2 collides with the right wall};
�����&���'� is true if {a link minimum collision occurs OR a link maximum collision occurs}.
These four Boolean variables are shown in Figure 6.

Computing Post-Collision Velocities
It is assumed that a slotmin collision and a slotmax collision cannot occur at the same instant.
Consequently, in the event of a slot collision, the corresponding coefficient of restitution is
computed as shown in Figure 7.

Figure 7. Computing effective coefficient of restitution in the event of a slot link collision

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

9

As depicted earlier in Figure 5, �����
���'�(�� and �����
���'�(% are Boolean variables
that are “high” when the corresponding collision, slotmin or slotmax, is detected. From Figure 7, it is
seen that ������ is equal to ������)(�� or ������)(% , depending on whether a slotmin or a
slotmax collision was detected.

Figure 8. Computing link collision bounce velocities

From Figure 8, it is clear that !"���� and #"���� contain the “previous” (or, one-step
delayed) velocities v1 and v2. In the event of a link collision, the post-collision velocities are given
by

() ()()
()v

m m r v m v r

m m
new slot slot

prev prev
slot

1
1 2 1 2 2

1 2

1
() =

− + +

+

() ()()
()v

m m r v m v r

m m
new slot slot

prev prev
slot

2
2 1 2 1 1

1 2

1
() =

− + +

+

where rslot is the corresponding coefficient of restitution that is applicable for the given collision, as
computed in Figure 7.

As mentioned before, the physics that governs the collision of a mass with an immovable wall is
different from that which describes the slot collisions. On colliding with a wall, a mass must
rebound with a velocity equal to

v v rnew wall prev
left wall1 1

() = − −

v v rnew wall prev
right wall2 2

() = − −

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

10

A note of caution is required at this point. The case when a wall collision immediately follows a
link collision poses special problems. In this case, to avoid incorrect results, one must ensure that
the velocity at the instant preceding the wall collision is given by !"���� or #"���� under
normal conditions; and by !"�� or #"�� if at the instant preceding the wall collision, a slot
collision occurred.

The diagram segment for computing new velocities following wall collisions and routing the
correct reset values to the ���� !"���	%� and ���� #"���	%� variables is shown in Figure 9.

Figure 9. Determination of block velocity reset values

From Figure 9, several subtle but important points are apparent. If no wall collisions occurred in
the previous instant, the reset values are !"����
$ and #"����
$ (link collision reset
velocities) as computed in Figure 8. If left or right wall collisions occurred in the previous instant,
the corresponding velocity is reset to -rleft-wall* v1

prev or -rright-wall* v2
prev, as appropriate. If left or right

wall collisions occurred in the previous instant, and in the instant prior to that, a block collision
occurred, the reset velocity is computed using v1 and v2 instead of v1

prev and v2
prev. Obviously, if no

collisions occurred in the previous instant, no adjustments are made to the block velocities.

Enforcing No Movement on Zero Velocity
Similar to the Boolean equality evaluations described previously, another possible source of errors
in dynamic simulations is the spurious movements produced by near-zero velocities and forces.
This is particularly important in cases where exact simulation of nonlinear frictional behavior is
required.

Figure 10. Velocity threshold to enforce zero movement (top level)

Figure 10 represents a velocity thresholding operation at a higher level. The actual signal and a
zero threshold value are provided as inputs to the compound block, and a corrected value is
returned as the output.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

11

Figure 11. Velocity threshold to enforce zero movement (logic)

From the logical operations depicted in Figure 11, it is seen that when the absolute value of the
block velocity is less than or equal to the zero threshold value, the velocity is corrected to be equal
to zero. Otherwise, the velocity is left unchanged.

System Dynamics
The actual dynamics of the system are examined next. As with most numerical simulations, the
solution to a dynamic system is obtained by rewriting the corresponding differential equations as
equivalent integral equations.

To compute the acceleration v1
dot of mass m1, the net force acting on m1 is divided by m1. This

operation is shown in Figure 12.

Figure 12. Computation of v1
dot

As examined previously, the output of the ���*���� compound block is the net frictional force
acting on m1. As the frictional force always opposes the motion of m1, the net force acting on m1 is
the difference between the external force f1 and the net frictional force. The kinematic acceleration
v1

dot of m1 is obtained by dividing the net force with m1 Similar algebra is performed to determine
the acceleration v2

dot of mass m2.

To obtain the instantaneous velocity and position of m1, v1
dot must be integrated twice. The first

integration stage is shown in Figure 13. VisSim provides a �
�
����
��%��� that can be reset
to a particular value, whenever a Boolean input becomes "true." In this case, the Boolean input is
���� !"�� which was determined in Figure 6, and is "true" on the occurrence of either a slot
collision or if m1 collides with the left wall.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

12

Figure 13. Integration of v1
dot to determine v1

Setting Initial Conditions Externally for Integrators
To specify an initial condition for an integrator externally, the �+((���,+������ block can be
used. The output of the integrator, represented in VisSim by !-�, is connected to one of the inputs
of the �+((���,+������ and the desired initial condition is connected to the other input. For this
procedure to work, the internal initial condition for this integrator must be set to zero. (All VisSim
integrators have a default internal initial condition of zero.)

In Figure 13, it is seen that the output of the �
�
����
��%��� block, and the initial condition
�.�� !"�� are connected to the �+((���,+������ block. This assigns the value of the variable
�.�� !"�� as the initial value for the output of the integrator, which in this case is the block
velocity v1, which in turn is obtained by integrating v1

dot. The output of the �+((���,+������
block then passes through the zero thresholding process shown in Figures 10 and 11, and the
output of the thresholding process is set to be the actual value of v1.

Now comes another tricky part – the actual reset value. When the Boolean ���� !"�� is "true,"
v1 must be reset to ���� !"���	%� as computed in Figure 9. However, since the initial condition
is being set externally as described above, an equivalent amount must be deducted from the reset
value, so that the correct value of v1 is observed at the output of the �+((���,+������ block.
Consequently, the difference (���� !"���	%� - �.�� !"��) is provided as the reset value to the
�
�
����
��%���. A similar sequence of operations is performed to obtain v2 by integrating v2

dot.

Integrating Velocities to Obtain Positions
The ideas presented in the preceding section are carried a little further, by integrating the
velocities obtained above to compute positions. Since each block is subjected to external, physical
travel stops that constrain its motion, ��(��
"���
��%��� blocks are used in VisSim to perform
this state of numerical integration, as shown in Figure 14.

Figure 14. Integration of v1 and v2 to obtain x1 and x2

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

13

The ��(��
"���
��%��� accepts user-specified upper and lower limits, denoted by "u" and "l"
on the connector tabs. The ��(��
"���
��%��� integrates the input value and limits the internal
state to user-specified upper and lower limits. The initial positions of the two masses, �.�� !
and �.�� #, are specified as shown in Figure 14, by adding them to the outputs of the appropriate
integrators.

For both masses, the upper and lower travel stops are specified by the problem statement to be
 #�(% and !�(��, respectively. However, following the earlier discussion on specification of
external initial conditions, an amount equal to the initial condition must be subtracted from the
upper and lower limits to account for the externally specified initial condition. Consequently, in
the integration for x1, �.�� ! is subtracted from the upper and lower limits, and in the integration
for x2, �.�� # is subtracted from the upper and lower limits.

Calculation of Kinetic Energy
The total kinetic energy of the system, assuming ideal conditions, is given by

2
222

12
112

1 vmvmKE +=

This expression may be calculated using the diagram segment shown in Figure 15. Monitoring the
value of kinetic energy is a good way to ensure that the simulation does not violate any basic
principles of physics.

Figure 15. Calculation of total kinetic energy

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

14

Specifying Simulation Parameters
The parameter values required for simulating the dynamic system can be set directly in VisSim or
accessed from an external data file. Since it is likely that the simulation will be run several
different scenarios, an �(/��� block is used in VisSim to access data from ASCII data files. The
diagram segment for initializing parameters from an external file is shown in Figure 16.

Figure 16. Initialization of simulation parameters

Recall that f1 and f2 are the external forces acting on m1 and m2. Additionally, f1 can be specified
directly from another data file, ���%���
."%�, as shown in Figure 16. When
&+���� is
selected, the force profile from ���%���
."%� is added to the value from ��/+�!."%�, and the
resulting value is assigned to f1. This setup becomes useful for running one of the test cases
discussed later in this tutorial.

Additionally, two other simulation variables need to be specified. The variables ����' and �
���
	
� are used in several diagram segments that were described earlier. The ����' variable is a
sequence of impulses with a time period equal to the simulation time step, and �
���	
� is a zero
threshold value for ensuring zero motion. These two variables are constructed as shown in Figure
17.

Figure 17. Initialization of simulation variables

Two external inputs can be assigned to the /+��
��%�� block. The desired amount of delay must
be connected to the top input, and the bottom input specifies the time between pulses. Since no
delay should be imposed, a constant value of zero is connected to the top input, and since the time
between pulses must be same as the simulation step size, the system variable 0��(
��
/
��
����
��
"
to the bottom input. Recall that 01����2%��, 0�%��2%��,
0�+�*�+��,
0��(
��", 0��(
��%��, and 0��(
��
/ are VisSim system variables that can be accessed
through the VisSim variable block. The zero threshold value is set to be 0.005.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

15

Monitoring Simulated Results
In addition to observing the dynamics visually by means of /��� and "��/�%�
&���'�, and
other means, the simulation output can also be recorded in an external data file. This is set up by
means of an
 /��� block in VisSim, which in Figure 18, is configured to save the output to
�+�/+�!."%�.

Figure 18. Saving simulation data to a data file

The �%(/ block connected to the top input tab of the
 /���
block outputs a value that is always
equal to current time t. This is the easiest way to access the simulation time in VisSim. In addition
we will monitor the positions x1, x2, velocities v1 and v2, and the kinetic energy of the system.

Test Cases
In the following test cases, the value of gravity is assumed to be g = 10 m/sec2. The masses are
assumed to be m1 = 1 Kg and m2 = 2 Kg. The left wall limit xleft-wall is assumed to be 0.0 m and the
right wall limit xright-wall is assumed to be 10.0 m. Six test cases are performed and the corresponding
input data is summarized below. However, results from only two cases are presented.

Table 1. Simulation parameters for the six test cases

Parameter Test No. 1 Test No. 2 Test No. 3 Test No. 4 Test No. 5 Test No. 6

m1 1.0 1.0 1.0 1.0 1.0 1.0

m2 2.0 2.0 2.0 2.0 2.0 2.0

µ1, µ2
1.0 1.0 0.0 1.0 0.0 1.0

rleft-wall 1.0 1.0 1.0 1.0 0.5 1.0

rright-wall 1.0 1.0 1.0 1.0 0.5 1.0

rslot-min 1.0 1.0 1.0 0.0 1.0 1.0

rslot-max 1.0 1.0 1.0 1.0 1.0 1.0

xleft-wall 0.0 0.0 0.0 0.0 0.0 0.0

xright-wall 10.0 10.0 10.0 10.0 10.0 10.0

xdiff-min 1.0 1.0 1.0 0.0 0.0 0.0

xdiff-max 2.0 2.0 2.0 2.0 50.0 2.0

x1(0) 1.0 1.0 1.0 1.0 1.0 1.0

x2(0) 2.5 2.5 2.5 2.8 9.0 2.0

v1(0) 0.0 1.0 -9.0 10.0 0.0 0.0

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

16

Table 1(cont.). Simulation parameters for the six test cases

Parameter Test No. 1 Test No. 2 Test No. 3 Test No. 4 Test No. 5 Test No. 6

v2(0) 0.0 1.0 1.0 0.0 0.0 0.0

f1 6.0 0.0 0.0 0.0 -2.0 triangular
profile

f2 -10.0 0.0 0.0 0.0 4.0 0.0

Test Case 3: Conservation of Energy
The input data for this case is available in ��/+�3."%�. The simulation duration in this case is
6.0 sec with a simulation step size of 0.001 sec. It is assumed that there are no frictional forces
acting on the two masses. Consequently the total kinetic energy of the system must remain
constant. Several collisions are observed, of all possible types: �
1��$%��, ���4��$%��, �����
(��, and �����(% . The coefficients of restitution are all assumed to be unity, such that no
energy is lost due to collisions.

Figure 19. Case 3: Mass positions

Figure 20. Case 3: Kinetic energy

The results obtained during this test are shown in Figures 19 and 20. The mass positions show a
series of �����(�� and �����(% collisions, along with a right wall collision around 2.73 sec
and a left wall collision around 4.6 sec. During this entire series of collisions, the total kinetic
energy remains constant at 41.5 J.

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

17

Test Case 5: Wall Collisions with Rattling Stop
The input data for this case is available in ��/+�5."%�. The duration of the simulation is 3.2 sec
and the simulation step size is 0.001 sec. An external force of -2 N is applied to m1 such that it
moves towards the left wall, and a force of 4 N is applied to m2 such that it moves towards the
right wall. Under the constant external forces, both m1 and m2 experience a series of collisions with
the left and right walls respectively. Each collision is associated with energy absorption. The
results obtained are shown in Figures 25 to 27.

Figure 21. Case 5: Mass positions

Figure 22. Case 5: Kinetic energy

Mass m2 starts from an initial position of x2 = 9.0 m and is forced into the right wall by the
external force f2 = 4.0 N. m2 collides with the right wall at t = 1.0 sec and bounces back with some
energy absorption. The external force causes m2 to repeat the collision with decreasing time
between collisions. The mass finally rattles to a stop at t = 3.0 sec.

Mass m1 starts from an initial position of x1 = 1.0 m, and is forced into the left wall by the external
force f1 = -2 N. Mass m1 collides with the left wall at t = 1.0 sec and bounces back, absorbing some
energy. Mass m1 repeats collisions, with decreasing time between collisions, and finally rattles to a
stop at t = 3.0 sec. Slot collisions are not observed in this case.

The kinetic energy of the system, shown in Figure 22, is initially zero as both masses are at rest.
As the velocities of the two masses increase, the kinetic energy also increases, to about 6 J at t =
1.0 sec. At this instant, both masses collide with the walls as indicated by a sudden drop in the
kinetic energy. At this point, the velocities change direction (and sign). Due to the external forces,
the velocities start to build up again.

Depending on the case, one or both velocities may pass through zero and become positive. For the
first collision, this phase of rebuilding system energy occurs during the time period from t = 1.0
sec to t = 2.0 sec. The energy at this point is about 1.45 J, and another set of collisions occur at

VisSim Tutorial Series: Fundamentals of Mathematical Modeling and Simulation

18

this instant. The whole process repeats itself from this point on, with decreasing times between
successive collisions. More importantly, the magnitude to which the kinetic energy builds up
between collisions, decreases from collision to collision. Finally, at t = 3.0 sec., kinetic energy
reaches zero, and remains zero for the rest of the simulation.

Figure 23 indicates the times at which m1 and m2 collide with the left and right walls respectively.
The first collision occurs at t = 1.0 sec, the second at t = 2.0 sec, the third at t = 2.5 sec., and so on.
As time progresses, the time interval between successive collisions decreases, causing a rattling
effect. As can be seen from the figure, starting at t = 3.0 sec, the collision indicator stays high for
the remainder of the simulation, as both blocks rattle and stop against the two walls. The constant
high value of the collision indicator represents constant contact between the concerned objects.

Figure 23. Case 5: Occurrence of left and right wall collisions

Concluding Remarks
In this tutorial, we have shown the steps involved in formulating a mathematical model of a
dynamic system; developing a simulation in VisSim—the block diagram based nonlinear
modeling and simulation software; running several test cases from the same VisSim diagram;
analyzing and visually interpreting the results.

